Fig. 2 shows a stereoscopic view of the unit cell. As can be seen, the packing in the [010] direction is characterized by successive layers of polyanions, centred at 0.25 and 0.75, and cation polyhedra, centred at 0 and 0.5. As analysis has shown, extensive hydrogen bonding within the layers and between them stabilizes the structure.

The authors thank CONICET, CICPBA and SUB-CYT (R. Argentina) for financial support.

References

- AHMED, F. R. & PIPPY, M. E. (1970). NRC Crystallographic Programs for the IBM 360 System. NRC-22, revision June 1970. National Research Council of Canada, Ottawa.
- BAUR, W. H. (1970). Trans. Am. Crystallogr. Assoc. 6, 129-155.
- BAUR, W. H. (1972). Acta Cryst. B28, 1456-1465.
- BROWN, I. D. & SHANNON, R. D. (1973). Acta Cryst. A29, 266-282.
- BUCHANAN, D. R. & HARRIS, P. M. (1968). Acta Cryst. B24, 954-960.
- CHIARI, G. & FERRARIS, G. (1982). Acta Cryst. B38, 2331-2341.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.

DEBAERDEMAEKER, T., ARRIETA, J. M. & AMIGO, J. M. (1982). Acta Cryst. B38, 2465-2468.

- DURIF, P. A., AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1980). Acta Cryst. B36, 680–682.
- EVANS, H. T. (1966). Inorg. Chem. 5, 967-977.
- FANG, J. H. & ROBINSON, P. D. (1976). Am. Mineral. 61, 311–317.
 FERRARIS, G., FUESS, H. & JOSWIG, W. (1986). Acta Cryst. B42, 253–258.
- GINDEROW, D. & CESBRON, F. (1979). Acta Cryst. B35, 2499-2502.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 557. Ithaca, NY: Cornell Univ. Press.
- RIGOTTI, G., LAVAT, A. E., ESCOBAR, M. E. & BARAN, E. J. (1983). Z. Anorg. Allg. Chem. 501, 184–190.
- RIVERO, B. E., PUNTE, G., RIGOTTI, G. & NAVAZA, A. (1985). Acta Cryst. C41, 817–820.
- RIVERO, B. E., RIGOTTI, G., PUNTE, G. & NAVAZA, A. (1984). Acta Cryst. C40, 715-718.
- SAF'YANOV, YU. N. & BELOV, N. V. (1976). Dokl. Akad. Nauk SSSR, 227, 1112-1115.
- SAF'YANOV, YU. N., KUZ'MIN, E. A. & BELOV, N. V. (1978a). Kristallografiya, 23, 697-702.
- SAF'YANOV, YU. N., KUZ'MIN, E. A. & BELOV, N. V. (1978b). Dokl. Akad. Nauk SSSR, 242, 603-605.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SWALLOW, A. G., AHMED, F. R. & BARNES, W. H. (1966). Acta Cryst. 21, 397–405.
- WELLS, A. F. (1975). *Structural Inorganic Chemistry*, 4th ed., pp. 549–550. Oxford: Clarendon Press.

Acta Cryst. (1988). C44, 219-221

Structure of 1,2;1,3;1,4-Tri-µ-carbonyl-1,2,2,2,3,3,3,4,4,4-decacarbonyl-2,3-µ-hydridotetrahedro-cobalttriruthenium

By Louis J. Farrugia

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 27 May 1987; accepted 9 October 1987)

Abstract. $[CoRu_3(\mu-H)(\mu-CO)_3(CO)_{10}], M_r = 727.3,$ monoclinic, $P2_1/n$, a = 8.486 (1), b = 15.164 (5), c = 15.688 (1) Å, $\beta = 105.92$ (1)°, V = 1941.3 (7) Å³, Z = 4, $D_x = 2.49$ g cm⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 31.5$ cm⁻¹, F(000) = 1368, T = 298 K, R = 0.0179 for 2782 observed unique reflections. The directly observed hydrido ligand bridges an Ru-Ru edge [Ru-H 1.76 (4), 1.73 (4) Å]. The carbonyl ligand polytope with three bridging carbonyls bonded to cobalt is broadly similar to that found in the precursor anion $[CoRu_3(\mu-CO)_3(CO)_{10}]^-$, though the unusual skewed C_3 arrangement is not observed in the title complex.

Introduction. The isolobal relationship between the AuPR₃ unit and the H atom (Evans & Mingos, 1982; Lauher & Wald, 1981) has led to the suggestion that

transition-metal cluster compounds may allow prediction of the H-atom geometry in corresponding hydrido analogues (Lauher & Wald, 1981). This analogy becomes unreliable when more than one AuPR, unit is present owing to Au-Au bond formation (Braunstein & Rose, 1985; Hall & Mingos, 1984). From spectroscopic evidence it was proposed that the hydrido ligand $[HCoRu_3(CO)_{13}]$ (1) bridged the Ru₃ face in (Steinhardt, Gladfelter, Harley, Fox & Geoffroy, 1980), while a recent X-ray study on $[CoRu_3(\mu_3-AuPPh_3) (\mu$ -CO)₃(CO)₁₀] (Bruce & Nicholson, 1984) revealed the AuPPh, unit capping a CoRu₂ face. Our interest in the use of monohydrido cluster complexes as precursors for the synthesis of Hg-bridged compounds (Farrugia, 1987) prompted an examination of the structure of (1).

the easily determined position of the former moiety in

0108-2701/88/020219-03\$03.00

© 1988 International Union of Crystallography

Experimental. Prepared from modification of literature method (Steinhardt et al., 1980) by treatment of $[N(PPh_3)_2][CoRu_3(CO)_{13}]$ with HBF₄.Et₂O. Red prisms from hexane solution: crystal dimensions $0.2 \times$ 0.3×0.3 mm; systematic absences: h + l = 2n + 1 in h0l; k = 2n+1 in 0k0; Enraf-Nonius CAD-4F diffractometer; graphite monochromator; $\theta/2\theta$ scan mode; cell parameters refined by least-squares methods on basis of 25 independent θ values, $11 < \theta < 13^{\circ}$; intensities measured to $\theta = 25.0^{\circ}$ over range of hkl 0 to 10, 0 to 18, -18 to 18 and to $\theta = 20.0^{\circ}$ over *hkl* range 0 to 8, -14 to 0, -14 to 14; $4\overline{27}$, $\overline{118}$, $3\overline{72}$ measured every 2 h with 0.8% decay over 106 h data collection; 5854 reflections measured, 3397 independent data with 2782 having $I > 3.0\sigma(I)$ considered observed and used in structure determination and refinement; R_{int} before

Table 1. Final positional parameters (fractional coordinates), with e.s.d.'s in parentheses, and equivalent isotropic thermal parameters, U_{ea} (Å²)

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{eq}
Ru(1)	0.27393 (3)	0-42657 (2)	0.69783 (2)	0.030
Ru(2)	0-53987 (3)	0-52520(2)	0-79822 (2)	0.030
Ru(3)	0.53200 (3)	0.33212(2)	0.81786 (2)	0.033
Co	0.56803 (5)	0.40741(3)	0.67368 (3)	0.034
C(1)	0-1482 (4)	0.3276 (2)	0.6407 (2)	0.045
C(2)	0-1364 (4)	0.5171(2)	0-6299 (2)	0.042
C(3)	0.1552 (4)	0-4365 (2)	0.7843 (2)	0.047
C(4)	0.4451 (4)	0-6223 (2)	0.7257(2)	0.042
C(5)	0.4206 (4)	0.5490 (2)	0.8824(2)	0.042
C(6)	0.7386 (5)	0.5833 (2)	0.8669 (2)	0.052
C(7)	0.7111 (5)	0.2822(3)	0.9096 (3)	0.058
C(8)	0.4451 (4)	0.2266 (2)	0.7588 (2)	0.044
C(9)	0.3932 (4)	0.3291 (2)	0.8956 (2)	0.046
C(10)	0.3766 (4)	0.4362 (2)	0.5853(2)	0.044
C(11)	0.7148 (4)	0.3282 (2)	0.7452 (2)	0.052
C(12)	0.6899 (4)	0.5083 (2)	0.6999 (2)	0.042
C(13)	0.6464 (5)	0.3706 (3)	0.5861(2)	0.061
O(1)	0.0722 (3)	0.2701 (2)	0.6060 (2)	0.071
O(2)	0.0579 (3)	0.5690 (2)	0.5874 (2)	0.058
O(3)	0.0738 (3)	0.4451 (2)	0.8301 (2)	0.073
O(4)	0.3861 (3)	0.6802 (2)	0.6823(2)	0.062
O(5)	0.3562 (3)	0.5648 (2)	0.9350 (2)	0.060
O(6)	0.8510 (4)	0.6187 (2)	0.9052(2)	0.090
O(7)	0.8138 (4)	0.2525 (2)	0.9624 (2)	0.097
O(8)	0.3971 (3)	0.1635 (2)	0.7216(2)	0.063
0(9)	0.3211(3)	0.3233 (2)	0.9466 (2)	0.068
O(10)	0.3269 (3)	0.4532 (2)	0.5117(2)	0.078
oùii	0.8360 (4)	0.2910(2)	0.7514(2)	0.089
O(12)	0.7892 (3)	0.5518(2)	0.6849 (2)	0.067
O(13)	0.6975 (4)	0.3472 (2)	0.5309 (2)	0.105
нÌ́́	0.614 (6)	0.431 (3)	0.863 (3)	0.10 (2)

Table 2. Selected bond lengths (Å) and bond angles (°)

Ru(1)-Ru(2)	2-8036 (4)	Co-Ru(1)	2.6411 (5)
Ru(1)-Ru(3)	2.8515 (4)	Co-Ru(2)	2.7057 (5)
Ru(2)-Ru(3)	2.9467 (4)	Co-Ru(3)	2.6254 (5)
Ru(1) - C(1)	1.916 (4)	Ru(3)-C(7)	1.938 (4)
Ru(1) - C(2)	1.924 (3)	Ru(3)-C(8)	1.894 (4)
Ru(1)-C(3)	1.905 (4)	Ru(3)C(9)	1.914 (4)
Ru(2)-C(4)	1.899 (3)	Co-C(10)	1-876 (3)
Ru(2)-C(5)	1.906 (3)	$C_0 - C(11)$	1.867 (4)
Ru(2)-C(6)	1.945 (4)	Co-C(12)	1.829 (3)
Ru(2)—H	1.76 (4)	Co-C(13)	1.773 (4)
Ru(3)—H	1.73 (4)		
Ru(1)-C(10)	2.177 (3)	Mean C-O(terminal)	1-130 1
Ru(2)-C(12)	2.268 (3)	Mean C-O(bridging)	1-148 3
Ru(3)-C(11)	2.163 (4)		
Ru(1)-Co-C(13)	135.7 (2)	C(10)-Co-C(13)	86.2 (2)
Ru(2)-Co-C(13)	153-3 (2)	C(11)-Co-C(13)	86.2 (2)
Ru(3)-Co-C(13)	133.5 (2)	C(12)-Co-C(13)	97.4 (2)

absorption correction 0.033, after correction 0.020; corrected for Lorentz-polarization, absorption (DIFABS: Walker & Stuart, 1983) and extinction (Larson, 1970); solved by direct methods (MITHRIL; Gilmore, 1984) and subsequent full-matrix least squares; anisotropic thermal parameters for all non-H atoms; H atom located as strongest remaining feature $(0.57 \text{ e } \text{Å}^{-3})$ in difference Fourier map, and subject to unrestricted refinement; $\sum w(F_o - F_c)^2$ minimized with $w = [\sigma^2(F_o)]^{-1}$; max. Δ/σ 0.013, av. 0.001; $(\Delta\rho)_{max} + 0.37$, $(\Delta\rho)_{min} - 0.34$ e Å⁻³ in vicinity of metal atoms; R = 0.0179, wR = 0.0224; R (wR) = 0.0293 (0.0240)for all data; S = 1.49; atomic scattering factors including anomalous terms from International Tables for X-ray Crystallography (1974); calculations carried out on a Gould-SEL 32/27 minicomputer using the GX suite of programs (Mallinson & Muir, 1985).

Discussion. Final positional parameters are given in Table 1, with selected bond distances and angles in Table 2.* The atomic labelling scheme is shown in Fig.

^{*} Lists of structure factors, anisotropic thermal parameters for all non-H atoms, a complete listing of bond lengths and angles, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44454 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Molecular structure of complex (1).

1. A stereoview in Fig. 2 shows that complex (1) possesses no symmetry element since the Co-C(13) axis is tilted 13.2° from the normal to the Ru₃ plane, away from Ru(2). (1) may be viewed as constructed from the fragments 'Co(CO)₄' and 'Ru₃(μ -H)(CO)₉' each of which possess idealized C_s symmetry. For the 'Co(CO)₄' fragment this mirror plane comprises Co, C(12), O(12), C(13), O(13), whilst for 'Ru₃(μ -H)- $(CO)_{o}$ the mirror plane contains Ru(1), H, C(3), O(3). Within complex (1), however, these fragment mirror planes are not coincident, but are rotated relative to each other by 57.8°. The bridging carbonyl ligands do not show the skewed C_3 arrangement found in the precursor anion $[CoRu_3(\mu-CO)_3(CO)_{10}]^-$ (Steinhardt et al., 1980), but approximately eclipse the Co-Ru vectors.

The hydride bridges the longest Ru-Ru bond |Ru(2)-Ru(3)| and the Ru-H distances compare favourably with the mean value of 1.79 (1) Å found over a range of structures containing the Ru(μ -H)Ru moiety (Teller & Bau, 1981). The μ_2 bonding mode found for the hydride ligand in (1) contrasts with the asymmetric μ_3 geometry of the AuPPh₃ unit in $|CoRu_3(\mu_3$ -AuPPh₃)(μ -CO)₃(CO)₁₀| (Bruce & Nicholson, 1984), where this ligand bridges a CoRu₂ face. These results thus provide further evidence that the isolobal relationship between H and AuPPh₃ cannot

reliably be used to infer hydride ligand positions from known stereochemistry in phosphineaurio derivatives.

Complex (1) appears to be isomorphous and isostructural to the osmium analogue $|CoOs_3(\mu-H)(\mu-CO)_3(CO)_{10}|$ (Raithby, personal communication).

References

- BRAUNSTEIN, P. & ROSE, J. (1985). Gold Bull. 18, 17-30.
- BRUCE, M. I. & NICHOLSON, B. K. (1984). Organometallics, 3, 101-108.
- EVANS, D. G. & MINGOS, D. M. P. (1982). J. Organomet. Chem. 232, 171-191.
- FARRUGIA, L. J. (1987). J. Chem. Soc. Chem. Commun. pp. · 147-149.
- GILMORE, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- HALL, K. P. & MINGOS, D. M. P. (1984). Prog. Inorg. Chem. 32, 237-325.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71–151. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

LARSON, A. C. (1970). Crystallographic Computing, edited by F. R. AHMED, p. 291. Copenhagen: Munksgaard.

- LAUHER, J. W. & WALD, K. (1981). J. Am. Chem. Soc. 103, 7648-7650.
- MALLINSON, P. R. & MUIR, K. W. (1985). J. Appl. Cryst. 18, 51-53.
- STEINHARDT, P. C., GLADFELTER, W. L., HARLEY, A. D., FOX, J. R. & GEOFFROY, G. L. (1980). *Inorg. Chem.* **19**, 332-339.

TELLER, R. G. & BAU, R. (1981). Struct. Bonding (Berlin), 44, 1-82.

WALKER, N. & STUART, D. (1983). Acta Cryst. A 39, 158-166.

Acta Cryst. (1988). C44, 221-226

$ErRh_3Si_2$ and Isotypes with an Orthorhombic Deformation Superstructure of the $CeCo_3B_2$ Type

By K. Cenzual, B. Chabot and E. Parthé

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

(Received 13 July 1987; accepted 14 October 1987)

Abstract. $M_r = 532 \cdot 1$, oI24, Imma, a = 7.098 (8), b = 9.519 (1), c = 5.500 (1) Å, $V = 371 \cdot 6$ (5) Å³, Z = 4, $D_x = 9.51$ Mg m⁻³, λ (Mo Ka) = 0.71073 Å, $\mu = 36.3$ mm⁻¹, F(000) = 924, T = 293 K, R = 0.047 for 291 independent reflections. YRh₃Si₂, LaRh₃Si₂ and NdRh₃Si₂ are isotypic with ErRh₃Si₂. The ErRh₃Si₂ structure represents a new deformation superstructure of the hexagonal CeCo₃B₂ (ternary CaCu₅) structure where $a \simeq 2c$ [CeCo₃B₂], $b \simeq 3^{1/2}a$ [CeCo₃B₂] and $c \simeq a$ [CeCo₃B₂]. As compared with the parent type this deformation variant is characterized by zigzag chains of rare-earth atoms and by pairs of Si atoms. The structure of ErRh₃Si₂ is further compared with four other deformation variants of the $CeCo_3B_2$ type and a review of structure types related to $CaCu_5$ is presented.

Introduction. ErRh₃Si₂ and eight other RRh_3Si_2 compounds with R = Y, La, Nd, Sm, Gd, Tb, Dy and Ho were originally reported to crystallize with the CeCo₃B₂-type structure by Chevalier, Cole, Lejay & Etourneau (1981) who also investigated their magnetic properties and superconducting behaviour. However, additional lines were present on all our powder X-ray diffraction films of samples containing ErRh₃Si₂. We shall show here that ErRh₃Si₂ and at least three other compounds reported by Chevalier *et al.* (and probably

0108-2701/88/020221-06\$03.00

© 1988 International Union of Crystallography